F31X303MCPAPG100600燃機(jī)卡件主控PC機(jī)為標(biāo)定系統(tǒng)的最上層,可以在線監(jiān)控整車CAN網(wǎng)絡(luò)數(shù)據(jù),并對(duì)整車控制器標(biāo)定參數(shù)進(jìn)行在線修改,從而對(duì)系統(tǒng)進(jìn)行統(tǒng)一控制管理。CAN通信模塊采用NI 9853兩通道高速CAN采集模塊采集整車CAN網(wǎng)絡(luò)信號(hào),分辨率達(dá)25ns,支持11位和29位任意ID,該方案具有高集成度的特點(diǎn),節(jié)省了設(shè)備投入,并使標(biāo)定人員的工作環(huán)境得到了簡(jiǎn)化。
F31X303MCPAPG100600燃機(jī)卡件系統(tǒng)軟件設(shè)計(jì)混合動(dòng)力汽車整車標(biāo)定系統(tǒng)的軟件設(shè)計(jì)充分考慮了CompactRIO系統(tǒng)的硬件特性,軟件編程主要包括底層FPGA程序、RT程序以及上位機(jī)Host程序三個(gè)部分。
底層FPGA程序?qū)崿F(xiàn)各個(gè)板卡的數(shù)據(jù)采集、各個(gè)IO通道的校正系數(shù)的傳遞,數(shù)據(jù)與RT的DMA傳輸?shù)取T程序負(fù)責(zé)與底層FPGA通信,RT系統(tǒng)的指示燈閃爍、用戶開(kāi)關(guān)的控制,與上位機(jī)Host的TCP/IP網(wǎng)絡(luò)通信、FTP數(shù)據(jù)傳輸以及測(cè)試數(shù)據(jù)的標(biāo)定、解釋以及記錄等功能。上位機(jī)Host程序負(fù)責(zé)配置整體測(cè)試系統(tǒng)通道,與RT通信,并可實(shí)時(shí)監(jiān)控采集板卡的特定通道,查看RT上保存的數(shù)據(jù)等。
整個(gè)軟件支持不同的采樣率,支持CAN幀的記錄與轉(zhuǎn)換,以及TDMS文件格式的存儲(chǔ),控制器的數(shù)據(jù)記錄通過(guò)前面板指示燈閃爍顯示,并可通過(guò)前面板自定義開(kāi)關(guān)暫停數(shù)據(jù)記錄。系統(tǒng)已經(jīng)擴(kuò)展U盤,數(shù)據(jù)會(huì)自動(dòng)存儲(chǔ)在U盤中,下電后只需將U盤中的數(shù)據(jù)復(fù)制到上位機(jī)即可。
在用Labview圖形化語(yǔ)言開(kāi)發(fā)完運(yùn)行在FPGA目標(biāo)上的程序之后,對(duì)該程序進(jìn)行編譯,并將編譯后的文件下載到FPGA芯片上。RT程序可通過(guò)Labview Real-Time Application工具下載到NI CompactRIO實(shí)時(shí)系統(tǒng)中,這樣系統(tǒng)只要一上電,RT程序就會(huì)自動(dòng)運(yùn)行。
根據(jù)標(biāo)定系統(tǒng)的基本功能將上位機(jī)軟件分為以下幾個(gè)模塊:CAN通信控制模塊、整車控制器標(biāo)定模塊、CAN網(wǎng)絡(luò)數(shù)據(jù)監(jiān)測(cè)模塊。CAN通信配置模塊的主要作用是配置CAN通道的相關(guān)信息,從而驅(qū)動(dòng)NI 9853CAN卡,進(jìn)行CAN數(shù)據(jù)的收發(fā);標(biāo)定的大部分工作都是在整車控制器標(biāo)定模塊下完成的,該模塊要執(zhí)行的任務(wù)總體來(lái)說(shuō)有兩個(gè):讀RAM區(qū)域數(shù)據(jù),并在PC上顯示、以及下載數(shù)據(jù)到RAM區(qū)域。圖2所示為標(biāo)定界面,標(biāo)定過(guò)程中的各項(xiàng)指令均以控件的形式顯示在前面板,用戶在點(diǎn)擊某項(xiàng)指令時(shí),該模塊應(yīng)能夠接收用戶的標(biāo)定指令并起動(dòng)管理相應(yīng)線程。CAN網(wǎng)絡(luò)數(shù)據(jù)監(jiān)測(cè)模塊的主要作用是將CAN卡獲得的整車CAN網(wǎng)絡(luò)消息進(jìn)行處理,最后顯示在監(jiān)測(cè)界面上。從CAN卡獲得的CAN消息仍然是數(shù)據(jù)幀的形式,為了給測(cè)試人員提供友好的界面,需要在十進(jìn)制數(shù)據(jù)和控制器中所采用的二進(jìn)制數(shù)據(jù)之間進(jìn)行轉(zhuǎn)換,同時(shí)在應(yīng)用程序中需要根據(jù)各控制器發(fā)送的CAN消息的ID號(hào)進(jìn)行相應(yīng)的數(shù)據(jù)解析
difference is not zero, the eccentricity of axes B and C is one half of the height difference. The measurement method is as follows: first, install the core rod for testing on the main shaft, correct the b axis, and make the core rod (main shaft axis) perpendicular to the XY plane (square method); As shown in Fig. 6, rotate axis B by + 90 ° and - 90 ° respectively to measure the height difference of the lowest point on the side of the mandrel in the two directions. If the height difference is zero, the spatial geometric relationship between the pendulum head and the main shaft conforms to the ideal situation. If the height difference is not zero, the eccentricity of the main shaft and the b-axis is half of the height difference.
First, the eccentricity of the b-axis and the spindle is measured in the same way as that of the single pendulum head milling machine.
Then, measure the eccentricity of axis C and the main shaft. The method is as follows: as shown in the left of Fig. 8,