公司主營產(chǎn)品圖展示
產(chǎn)品優(yōu)勢
1:國外專業(yè)的供貨渠道,具有價格優(yōu)勢
2:產(chǎn)品質(zhì)量保證,讓您售后無憂
3:全國快遞包郵
4:一對一服務(wù)
公司主營產(chǎn)品文字介紹
PLC可編程控制器模塊,DCS卡件,ESD系統(tǒng)卡件,振動監(jiān)測系統(tǒng)卡件,汽輪機(jī)控制系統(tǒng)模塊,燃?xì)獍l(fā)電機(jī)備件等,優(yōu)勢品牌:Allen Bradley、BentlyNevada、ABB、Emerson Ovation、Honeywell DCS、Rockwell ICS Triplex、FOXBORO、Schneider PLC、GE Fanuc、Motorola、HIMA、TRICONEX、Prosoft等各種進(jìn)口工業(yè)零部件、歐美進(jìn)口模塊。
產(chǎn)品廣泛應(yīng)用于冶金、石油天然氣、玻璃制造業(yè)、鋁業(yè)、石油化工、煤礦、造紙印刷、紡織印染、機(jī)械、電子制造、汽車制造、塑膠機(jī)械、電力、水利、水處理/環(huán)保、鍋爐供暖、能源、輸配電等等
產(chǎn)品詳情內(nèi)容介紹
ACN6340120500000000902控制器
如果檢測到錯誤比較,則輸出10打開,40010將包含該位錯誤如下圖所示。這些錯誤位存儲在R-T功能塊的錯誤表。MBIT功能塊設(shè)置相同矩陣B中的位,因此在每次掃描時,故障輸入不會放入錯誤表中。B863–132 24 Vdc輸入模塊檢測并將開關(guān)輸入信號轉(zhuǎn)換為PLC使用的邏輯電壓電平。此模塊檢測并報告斷線故障。該模塊設(shè)計用于安全應(yīng)用,因此它可以監(jiān)控現(xiàn)場接線。此模塊滿足連接診斷需要的應(yīng)用程序?qū)α鞒毯苤匾_壿媯?cè)LED指示寫入的邏輯狀態(tài)狀態(tài)表A位于模塊后部的四位DIP開關(guān)(見下圖)為用于選擇斷線測試。每個單獨的開關(guān)都與四個開關(guān)中的一個相關(guān)八個輸入點組成的組。
例如,當(dāng)設(shè)置為關(guān)閉時,DIP開關(guān)位置#1檢測到斷線故障
第1組,依此類推;設(shè)置為打開時,不會報告任何故障。
在線路測試模式下操作模塊時,只應(yīng)使用二進(jìn)制文件。不要使用BCD。
線路測試雙列直插式開關(guān)設(shè)置如下所示。位于模塊后部的四位DIP開關(guān)(見下圖)為用于選擇斷線測試。
每個單獨的開關(guān)都與四個開關(guān)中的一個相關(guān)八個輸入點組成的組。
例如,當(dāng)設(shè)置為關(guān)閉時,DIP開關(guān)位置#1檢測到斷線故障第1組,依此類推;設(shè)置為打開時,不會報告任何故障。
在線路測試模式下操作模塊時,只應(yīng)使用二進(jìn)制文件。不要使用BCD。
線路測試雙列直插式開關(guān)設(shè)置如下所示。配置后,此模塊顯示為B863模塊。這意味著模塊需要四個16位字(1x寄存器),如數(shù)據(jù)寄存器圖所示在下面前兩個單詞包含輸入點的狀態(tài)。第二個單詞包含現(xiàn)場接線的狀況。如果在輸入端檢測到斷線點,然后在輸入寄存器(1x+32)的位置顯示一個1。當(dāng)出現(xiàn)故障時是固定的,則位中出現(xiàn)零。1表示檢測到故障,而0指示該輸入點的正常操作。電阻器連接必須在有源設(shè)備端安裝上拉電阻器才能使用B864輸出單元上拉電阻的值取決于連接到數(shù)據(jù)總線,如下所述。每個輸出滿足0.4 V邏輯低時最大16 mA,邏輯高時最小3.3 V。如果超過電流限制,應(yīng)調(diào)整上拉電阻值在規(guī)范范圍內(nèi);否則,可能會獲得虛假結(jié)果。下圖顯示了電阻器在設(shè)備上的連接方式終止對于由16條數(shù)據(jù)線組成的單個設(shè)備,需要16個1K電阻,或,一個1 K電阻/數(shù)據(jù)線。當(dāng)附加設(shè)備添加到數(shù)據(jù)總線時上拉電阻器的電阻必須增加1K。換句話說,如果兩個設(shè)備使用時,上拉電阻必須為2K,三個設(shè)備需要3K上拉,以此類推在上,每個數(shù)據(jù)線最多8個設(shè)備需要8k上拉。
上拉電阻器連接
Application Example 2
If a miscompare is detected then output 10 goes ON and 40010 will contain the bit with the error as shown in the following illustration. These error bits are stored in an error table through the R-T function block. The MBIT function block sets the same bit in matrix B so the input at fault is not placed into the error table on every scan.The B863–132 24 Vdc input module senses and converts switched input signals into logic voltage levels used by the PLC. This module senses and reports broken wire faults. The module is designed for safety applications whereby it monitors essential field wiring. This module satisfies applications where connectivity diagnostics are important to the process. A logic side LED indicates the logic state that is written into the state table A four–position DIP switch located on the rear of the module (see diagram below) is used to select broken wire testing. Each individual switch relates to one of the four groups of eight input points. For example, DIP-Switch position #1 when set to off senses for broken wire faults for group 1 and so on; when set to on no fault is reported. Only Binary should be used when operating module in line test mode. Do not use BCD. The line test dip-switch settings are shown below.This module appears as a B863 module when configured. This means the module requires four 16–bit words (1x registers), as shown in the data registers diagram below. The first two words contains the state of the input points. The second two words contain the condition of the field wiring. If a broken wire is detected on input point, then a one is displayed in input register (1x+32) at its position. When the fault is fixed, a zero appears in the bit. A one indicates a detected fault, whereas, a zero indicates normal operation of that input point.
Resistor Connection
Pull-up resistors must be installed at the active device end to use the B864 output module. The value of the pull-up resistor depends upon the number of devices that are attached to the data bus, as explained below. Each output meets 0.4 V maximum at 16 mA for a logic low and 3.3 V minimum at 16 mA for a logic high. If the current limit has been exceeded, the pull-up resistor values should be adjusted within specification; otherwise, spurious results may be obtained. The following illustration indicates how the resistors are connected at the device end. For a single device consisting of 16 data lines, 16 1 K resistors are required, or, one 1 K resistor/data line. As additional devices are added to the data bus, the value of the pull-up resistor must be increased by 1 K. In other words, if two devices are used, the pull-up resistor must be 2 K, three devices require a 3 K pull-up, and so on, with the maximum number of 8 devices requiring 8 k of pull-up for each data line. Pull-up resistor connection