CFD仿真基本理論為:電力電子設(shè)備的散熱設(shè)計(jì)屬于不可壓縮、常物性、無(wú)內(nèi)熱源的三維對(duì)流傳熱問(wèn)題,結(jié)合傳熱學(xué)和流動(dòng)動(dòng)力學(xué)基本理論,得出描述該問(wèn)題的微分方程組。
任何流動(dòng)問(wèn)題都必須滿足三大基本方程組,即質(zhì)量守恒方程、動(dòng)量守恒方程和能量守恒方程。質(zhì)量守恒及動(dòng)量守恒方程是描述粘性流體過(guò)程的控制方程,適用于不可壓縮粘性流體的層流及湍流流動(dòng)。
對(duì)于一個(gè)實(shí)際換熱問(wèn)題,借助軟件實(shí)現(xiàn)仿真的前提是獲取物理模型參數(shù),如模型外形尺寸、關(guān)鍵器件尺寸、熱源尺寸及分布、接觸熱阻、熱管尺寸及熱阻、各個(gè)材料屬性、邊界條件的環(huán)境參數(shù)等。
2.2 高壓變頻器IGBT功率單元熱仿真實(shí)例
(1)IGBT封裝的結(jié)構(gòu)組成
在一個(gè)IGBT模塊里,數(shù)個(gè)功率半導(dǎo)體芯片(IGBT芯片以及Diode芯片)被集成到一塊共同的底板上,且模塊的功率器件與其安裝表面(散熱板)相互絕緣。這些芯片的底面被焊接于(或被粘貼于)一塊絕緣基片的金屬化表面上。該絕緣基片的作用是在保證良好導(dǎo)熱性能的同時(shí)還提供了相對(duì)于模塊底板的電氣絕緣。芯片的上表面被金屬化,它的電氣連接可以采用細(xì)的鋁制鍵接線用鍵接的方式來(lái)實(shí)現(xiàn)。
如圖1所示,為FF450R17ME4模塊內(nèi)部細(xì)節(jié)圖。在進(jìn)行熱仿真的前期模型處理時(shí),需詳細(xì)搭建內(nèi)部晶圓的尺寸及布局。對(duì)于模型主要部分,如銅基板、DBC、覆銅板、晶圓和封裝外殼,都是不可省略的部分。我們常發(fā)現(xiàn),一些散熱器廠家簡(jiǎn)單的用一個(gè)封裝銅基板大小的面熱源進(jìn)行仿真計(jì)算,這種方法是完全錯(cuò)誤的。這樣計(jì)算將使熱流密度和擴(kuò)散熱阻很大程度上的削減,使得實(shí)際溫度會(huì)明顯高于仿真溫度。
如圖2所示,為IGBT模塊內(nèi)部結(jié)構(gòu)的詳細(xì)示意圖,在仿真過(guò)程中,需詳細(xì)考慮各個(gè)組成部分的材質(zhì)、熱阻及熱容,使得仿真結(jié)果更加準(zhǔn)確。
FF450R17ME4模塊內(nèi)部細(xì)節(jié)圖
FF450R17ME4模塊內(nèi)部細(xì)節(jié)圖
圖1- FF450R17ME4模塊內(nèi)部細(xì)節(jié)圖
IGBT模塊內(nèi)部結(jié)構(gòu)的詳細(xì)示意圖
IGBT模塊內(nèi)部結(jié)構(gòu)的詳細(xì)示意圖
圖2-IGBT模塊內(nèi)部結(jié)構(gòu)的詳細(xì)示意圖
(2)設(shè)計(jì)案例背景介紹
案例介紹的功率單元采用常用的兩個(gè)FF450R17ME4模塊,常規(guī)使用時(shí),通常按模塊利用率50%進(jìn)行選型,即輸出電流為225A。為提高單個(gè)功率單元模塊的利用率來(lái)降低模塊及整機(jī)的成本,業(yè)內(nèi)一些廠家已將利用率提高到66%。The manufacturing and debugging of products are simpler, and the repair rate is greatly reduced. When programming, you can apply the new development and new concepts of relevant majors in recent years without hardware restrictions at any time. So I chose LOGO! And it has been used all the time.
The carbon dioxide remover is mainly used to remove the carbon dioxide generated by the respiration of fruits and vegetables in the air-conditioned refrigeration warehouse and supplement the oxygen consumed by respiration. The concentration of O2 in the reservoir shall be maintained at a suitable percentage.
The product adopts the principle of activated carbon adsorption to remove CO2, and has an automatic oxygenation device. During operation, it is divided into "regeneration" and "adsorption". In the process of two-stage conversion, in order to prevent the residual oxygen in the adsorption tank from being sent to the cold storage after activation, it is necessary to send the low-oxygen gas in the storage for conversion. At the end of adsorption, in order to prevent the low-oxyge