MVME2306機器人模塊卡件
混凝土劣化問題包括但不限于堿硅酸反應、延遲鈣礬石形成、碳化、腐蝕鋼筋周圍的縱向裂縫以及鋼筋位置的層狀裂縫。現有混凝土基底的強度是粘結關鍵應用的重要參數,包括彎曲或剪切加固?;膽哂斜匾膹姸龋酝ㄟ^粘結形成FRP系統(tǒng)的設計應力?;?,包括修復區(qū)域和原始混凝土之間的所有粘結表面,應具有足夠的直接拉伸和剪切強度,以將力傳遞到FRP系統(tǒng)。對于鍵合關鍵應用,抗拉強度應至少為200 psi(1.4 MPa),通過根據ICRI 210.3R或ASTM C1583/C1583M使用拉脫式附著力測試確定。當混凝土基底的抗壓強度fc′小于2500 psi(17 MPa)時,不得使用FRP系統(tǒng)。接觸臨界應用,例如僅依賴于FRP系統(tǒng)和混凝土之間緊密接觸的約束柱包裹,不受這些最小值的約束。FRP系統(tǒng)中的設計應力是通過接觸臨界應用中混凝土截面的變形或膨脹產生的。FRP系統(tǒng)的應用不會阻止現有鋼筋的持續(xù)腐蝕(El Maaddwy等人,2006)。如果鋼腐蝕明顯或正在使混凝土基底劣化,則不建議在不阻止持續(xù)腐蝕和修復基底劣化的情況下放置FRP鋼筋。第2章-注釋和定義2.1-旋轉Ac=受壓構件中混凝土的橫截面積, (毫米)分貝? = 受限塑料鉸鏈中縱向鋼的直徑,英寸。(mm)df=FRP受彎鋼筋的有效深度,in。(mm)dfv=FRP抗剪鋼筋的有效深度,in。(mm)di=第i層縱向鋼筋形心至橫截面幾何形心的距離,英寸。(mm)dp=從極限壓縮纖維到預應力鋼筋質心的距離,英寸。(mm)E2=FRP約束混凝土應力-應變模型線性部分的斜率,psi(MPa)Ec=混凝土彈性模量,psi(MPa)Ef=FRP的拉伸彈性模量,磅/平方英寸(MPa)Eps=預應力鋼的彈性模量,MPa(MPa)Es=鋼的彈性模數,psi(兆帕)Es=預應力鋼相對于支撐構件形心軸的偏心率,在里面(mm)em=預應力鋼相對于跨中構件形心軸的偏心率,in。
(mm)fc=混凝土中的抗壓應力,psi(MPa)fc′=混凝土的規(guī)定抗壓強度,psi(MPa)fcc′=約束混凝土的抗壓強度,磅/平方英寸(MPa)fco′=無約束混凝土的壓縮強度;也等于0.85fc′,psi(MPa)fc,s=使用條件下混凝土的壓縮應力,psi(MPa)ff=FRP鋼筋的應力,磅/平方英寸(MPa)美國混凝土協會–版權所有?材料–www.concrete。org用于加固混凝土結構的外粘結FRP系統(tǒng)(ACI 440.2R-17)7 ffd=外粘結FRP鋼筋的設計應力,psi(MPa)ffe=FRP中的有效應力;截面破壞時獲得的應力,psi(MPa)ff,s=構件彈性范圍內力矩引起的FRP應力,si(MPa)ffu=FRP的設計極限抗拉強度,psi(MPa)ffu*=制造商報告的FRP材料的極限抗拉強度,psi(MPa)fps=標稱強度下預應力鋼筋中的應力,psi(MPa,psi(MPa)fsi=第i層縱向鋼筋中的應力,psi(MPa)fs,s=非預應力鋼筋在工作荷載下的應力,psi(MPa)g=FRP護套和相鄰構件之間的凈間隙,in(mm)h=構件的總厚度或高度,in。(mm)=矩形受壓構件的長邊橫截面尺寸,in。(mm)hf=構件法蘭厚度,in。(mm)hw=從底部到頂部的整個墻的高度,或考慮的墻段或墻墩的凈高,英寸。(mm)Icr=轉化為混凝土的開裂截面的慣性矩,in。4(mm4)Itr=轉換為混凝土的無裂縫截面的慣性矩,in。4(mm4)K=中性軸深度與從極限壓縮纖維測量的鋼筋深度之比k1=應用于κv的修正系數,以說明混凝土強度k2=應用于K v的修正因子,以說明包裹方案kf=FRP鋼筋每層單位寬度的剛度,lb/in。(N/mm);kf=Eftf Le=FRP層壓板的有效粘結長度,in。(mm)Lp=塑料鉸鏈長度,in。(mm)Lw=剪力墻長度,in。(毫米)?db=近表面安裝FRP筋的延伸長度,英寸。(毫米)?d、 E=FRP錨固包裹的長度,英寸。(毫米)?df=FRP系統(tǒng)的延伸長度,英寸。(毫米)?o=從接縫表面沿構件軸線測量的長度,必須在其上提供特殊的橫向鋼筋,英寸。(毫米)?prov=鋼搭接接頭的長度,英寸。(mm)Mcr=開裂力矩,in-lb(N-mm)Mn=標稱彎曲強度,in-lb(N-mm)Mnf=FRP鋼筋對標稱彎曲強度的貢獻,lb in。(N-mm)Mnp=預應力鋼筋對標稱彎曲強度的貢獻,lb in。(N-mm)Mns=鋼筋對標稱抗彎強度的貢獻,lb in。(N-mm)Ms=截面處的工作力矩,in-lb(N-mm)Msnet=減壓后截面的工作力矩,in-lb(N-mm)Mu=截面處的系數力矩,in-lb(N-mm)N=FRP鋼筋層數nf=FRP與混凝土之間的彈性模量比=Ef/Ec ns=鋼與混凝土之間彈性模量比=Es/Ec Pe=預應力鋼筋的有效力(考慮所有預應力損失后),lb(N)Pn=混凝土截面的標稱軸向抗壓強度,lb(N)Pu=系數軸向荷載,lb(N)pfu=每層FRP鋼筋每單位寬度的平均抗拉強度,lb/in。(N/mm)pfu*=極限抗拉強度
Concrete deterioration problems include, but are not limited to, alkali silica reaction, delayed ettringite formation, carbonation, longitudinal cracks around corroded reinforcement, and layered cracks at reinforcement locations. The strength of the existing concrete substrate is an important parameter for bond critical applications, including bending or shear strengthening. The base material shall have the strength necessary to develop the design stress of the FRP system by bonding. The substrate, including all bonded surfaces between the repaired area and the original concrete, shall have sufficient direct tensile and shear strength to transmit the force to the FRP system. For bonding critical applications, the tensile strength shall be at least 200 psi (1.4 MPa), as determined by using a pull off adhesion test in accordance with ICRI 210.3R or ASTM C1583/C1583M. The FRP system shall not be used when the compressive strength fc ′ of the concrete substrate is less than 2500 psi (17 MPa). Contact critical applications, such as confined column wraps that rely only on close contact between the FRP system and the concrete, are not constrained by these minimum values. Design stresses in FRP systems are generated by deformation or expansion of concrete sections in contact critical applications. The application of the FRP system does not prevent continued corrosion of existing reinforcement (El Maaddwy et al., 2006). If the steel corrosion is obvious or is deteriorating the concrete substrate, it is not recommended to place FRP reinforcement without preventing continuous corrosion and repairing the deterioration of the substrate. Chapter 2 - Notes and Definitions 2.1 - Rotational Ac=cross-sectional area of concrete in compression members, (mm) decibels ?=diameter of longitudinal steel in confined plastic hinges, inches. (mm) df=effective depth of FRP flexural reinforcement, in. (mm) dfv=effective depth of FRP shear reinforcement, in. (mm) di=distance from centroid of longitudinal reinforcement in layer i to geometric centroid of cross section, in. (mm) dp=distance from the ultimate compressive fiber to the centroid of the prestressing reinforcement, inches. (mm) E2=slope of the linear part of the stress-strain model of FRP confined concrete, psi (MPa) Ec=modulus of elasticity of concrete, psi (MPa) Ef=tensile modulus of elasticity of FRP, pounds per square inch (MPa) Eps=modulus of elasticity of prestressed steel, MPa (MPa) Es=modulus of elasticity of steel, psi (MPa) Es=eccentricity of the prestressed steel relative to the centroidal axis of the supporting member, in which (mm) em=eccentricity of the prestressed steel relative to the centroidal axis of the midspan member, in。
(mm) fc=compressive stress in concrete, psi (MPa) fc ′=specified compressive strength of concrete, psi (MPa) fcc ′=compressive strength of confined concrete, pounds per square inch (MPa) fco ′=compressive strength of unrestrained concrete; It is also equal to 0.85fc ′, psi (MPa) fc, s=compressive stress of concrete under service conditions, psi (MPa) ff=stress of FRP reinforcement, pounds per square inch (MPa) American Concrete Institute – all rights reserved ? Materials – www concrete。 Org External bonded FRP system for strengthening concrete structures (ACI 440.2R-17) 7 ffd=design stress of externally bonded FRP reinforcement, psi (MPa) ffe=effective stress in FRP; The stress obtained when the section is broken, psi (MPa) ff, s=FRP stress caused by the moment in the elastic range of the member, si (MPa) ffu=design ultimate tensile strength of FRP, psi (MPa) ffu *=ultimate tensile strength of FRP material reported by the manufacturer, psi (MPa) fps=stress in the prestressed reinforcement under the nominal strength, psi (MPa, psi (MPa) fsi=stress in the longitudinal reinforcement of the ith layer, psi (MPa) fs, S=stress of non prestressed reinforcement under working load, psi (MPa) g=net clearance between FRP sheath and adjacent members, in (mm) h=total thickness or height of members, in. (mm)=cross-sectional dimension of the long side of a rectangular compression member, in. (mm) hf=member flange thickness, in. (mm) hw=height of the entire wall from bottom to top, or the clear height of the wall segment or pier under consideration, in inches. (mm) Icr=moment of inertia of the cracked section converted to concrete, in. 4 (mm4) Itr=moment of inertia of the uncracked section converted to concrete, in. 4 (mm4) K=ratio of neutral axis depth to reinforcement depth measured from ultimate compressive fiber k1=applied to κ The correction factor of v to show that the concrete strength k2=the correction factor applied to K v, to show that the wrapping scheme kf=the stiffness of the unit width of each layer of FRP reinforcement, lb/in. (N/mm); Kf=Eftf Le=effective bonding length of FRP laminate, in. (mm) Lp=plastic hinge length, in. (mm) Lw=length of shear wall, in. (mm) ? db=Extension of near surface mounted FRP bars, inches. (mm) ? d, E=Length of FRP anchorage package, in. (mm) ? df=Extension length of FRP system, inches. (mm) ? o=Length measured from the joint surface along the axis of the member on which special transverse reinforcement must be provided, inches. (mm) ? prov=Length of steel lap joint, inches. (mm) Mcr=cracking moment, in lb (N-mm) Mn=nominal bending strength, in lb (N-mm) Mnf=FRP reinforcement contribution to nominal bending strength, lb in. (N-mm) Mnp=contribution of prestressing reinforcement to nominal bending strength, lb in. (N-mm) Mns=contribution of reinforcement to nominal bending strength, lb in. (N-mm) Ms=working moment at the section, in lb (N-mm) Msnet=working moment at the section after decompression, in lb (N-mm) Mu=coefficient moment at the section, in lb (N-mm) N=number of FRP reinforcement layers nf=elastic modulus ratio between FRP and concrete=Ef/Ec ns=elastic modulus ratio between steel and concrete=Es/Ec Pe=effectiveness of prestressed reinforcement (after considering all prestress losses), lb (N) Pn=nominal axial compressive strength of concrete section, Lb (N) Pu=factored axial load, lb (N) pfu=average tensile strength per unit width of each layer of FRP reinforcement, lb/in. (N/mm) pfu *=ultimate tensile strength