ICS TRIPLEX T3484模塊備件,備件模塊
能夠驅(qū)動(dòng)469差動(dòng)CT負(fù)載(額定值見(jiàn)第1-4頁(yè)第1.2節(jié):規(guī)范)。差分CT可以是如下圖所示的堆芯平衡。或者,差動(dòng)輸入中每相兩個(gè)CT的總和將提供更大的保護(hù)區(qū)。如果使用兩個(gè)CT的總和,則觀察CT極性很重要。也可以使用如下所示的相位CT來(lái)實(shí)現(xiàn)求和方法。它們必須具有相同的CT比率。圖2–14:鐵芯平衡方法圖2–15:無(wú)相CT和相CT的匯總方法GE Multilin 469電機(jī)管理繼電器2-13 2安裝2.2電氣2 2.2.4電壓輸入469有三個(gè)交流電壓輸入通道,每個(gè)通道都有一個(gè)隔離變壓器。電壓輸入上沒(méi)有內(nèi)部保險(xiǎn)絲或接地連接。最大VT比率為150.00:1。兩個(gè)VT連接為開(kāi)放三角形(見(jiàn)圖2-10:第2-8頁(yè)的典型接線圖)或Y形(見(jiàn)下文)。電壓通道在內(nèi)部以Y形連接,這意味著必須為開(kāi)放式三角電壓互感器安裝B相輸入和469中性端子之間的典型接線圖三角電源連接上所示的跳線。VT的極性對(duì)于正確的功率測(cè)量和電壓相位反轉(zhuǎn)操作至關(guān)重要。通常使用1 A保險(xiǎn)絲來(lái)保護(hù)輸入。圖2-16:WYE電壓互感器連接2.2.5數(shù)字輸入只有9個(gè)數(shù)字輸入設(shè)計(jì)用于干觸點(diǎn)連接。兩個(gè)數(shù)字輸入(訪問(wèn)和測(cè)試)具有自己的公共端子;數(shù)字輸入的其余部分共用一個(gè)公共端子(見(jiàn)圖2-10:第2-8頁(yè)的典型接線圖)。此外,+24 V DC開(kāi)關(guān)電源用于感應(yīng)式或電容式接近探頭的控制電源。NPN晶體管輸出可被帶到配置為計(jì)數(shù)器或轉(zhuǎn)速表的可分配數(shù)字輸入之一。有關(guān)+24 V直流開(kāi)關(guān)電源的最大電流消耗,請(qǐng)參閱第1–4頁(yè)第1.2節(jié):規(guī)范。不向數(shù)字輸入注入電壓。僅限干觸點(diǎn)連接。警告2-14 469電機(jī)管理繼電器GE Multilin 2.2電氣2安裝2 2.2.6模擬輸入469為四個(gè)0至1mA、0至20mA或4至20mA電流輸入信號(hào)(現(xiàn)場(chǎng)可編程)提供端子。該電流信號(hào)可用于監(jiān)測(cè)外部量,如振動(dòng)、壓力或流量。四個(gè)輸入共用一個(gè)公共回路。必須觀察這些輸入的極性,以便正確操作。模擬輸入電路與模擬輸出電路和RTD電路作為一組隔離。三個(gè)電路只能使用一個(gè)接地參考。相對(duì)于469安全接地,Transorbs將此隔離限制在±36 V。此外,+24V DC模擬輸入電源用于回路供電傳感器的控制電源。有關(guān)此電源的最大電流消耗,請(qǐng)參閱第1-4頁(yè)第1.2節(jié):規(guī)范。圖2–17:回路供電傳感器連接2.2.7模擬輸出469提供4個(gè)模擬輸出通道,可按要求提供0至1 mA(最大10 k? 阻抗)或4至20 mA(最大值為1200? 阻抗)。每個(gè)通道可配置為為任何測(cè)量參數(shù)的任何范圍提供滿量程輸出靈敏度。如第2–8頁(yè)圖2–10:典型接線圖所示,這些輸出共用一個(gè)公共回路。必須觀察這些輸出的極性,以便正確操作。應(yīng)使用屏蔽電纜,僅屏蔽一端接地,以盡量減少噪聲影響。模擬輸出電路與模擬輸入電路和RTD電路隔離為一組。三個(gè)電路只能使用一個(gè)接地參考。相對(duì)于469安全接地,Transorbs將此隔離限制在±36 V。如果需要電壓輸出,則必須在SCADA測(cè)量裝置的輸入端連接負(fù)載電阻器。忽略輸入的輸入阻抗,Rload=V滿量程/Imax。例如,對(duì)于0至1 mA,如果要求5 V滿量程對(duì)應(yīng)1 mA,則Rload=5 V/0.001 A=5000?. 對(duì)于4至20 mA,此電阻器
capable of driving the 469 differential CT burden (see Section 1.2: Specifications on page 1–4 for ratings). The differential CTs may be core balance as shown in the first figure below. Alternatively, the summation of two CTs per phase into the differential input will provide a larger zone of protection. If the summation of two CTs is used, observation of CT polarity is important. The summation method may also be implemented using the phase CTs as shown below. They will have to have the same CT ratio. Figure 2–14: CORE BALANCE METHOD Figure 2–15: SUMMATION METHOD WITHOUT PHASE CTs WITH PHASE CTs GE Multilin 469 Motor Management Relay 2-13 2 INSTALLATION 2.2 ELECTRICAL 2 2.2.4 VOLTAGE INPUTS The 469 has three channels for AC voltage inputs, each with an isolating transformer. There are no internal fuses or ground connections on the voltage inputs. The maximum VT ratio is 150.00:1. The two VT connections are open delta (see Figure 2–10: Typical Wiring Diagram on page 2–8) or wye (see below). The voltage channels are connected in wye internally, which means that the jumper shown on the delta-source connection of the TYPICAL WIRING DIAGRAM, between the phase B input and the 469 neutral terminal, must be installed for open delta VTs. Polarity of the VTs is critical for correct power measurement and voltage phase reversal operation. A 1 A fuse is typically used to protect the inputs. Figure 2–16: WYE VOLTAGE TRANSFORMER CONNECTION 2.2.5 DIGITAL INPUTS There are 9 digital inputs designed for dry contact connections only. Two of the digital inputs (Access and Test) have their own common terminal; the balance of the digital inputs share one common terminal (see Figure 2–10: Typical Wiring Diagram on page 2–8). In addition, the +24 V DC switch supply is brought out for control power of an inductive or capacitive proximity probe. The NPN transistor output could be taken to one of the assignable digital inputs configured as a counter or tachometer. Refer to Section 1.2: Specifications on page 1–4 for maximum current draw from the +24 V DC switch supply. DO NOT INJECT VOLTAGES TO DIGITAL INPUTS. DRY CONTACT CONNECTIONS ONLY. CAUTION 2-14 469 Motor Management Relay GE Multilin 2.2 ELECTRICAL 2 INSTALLATION 2 2.2.6 ANALOG INPUTS The 469 provides terminals for four 0 to 1mA, 0 to 20mA, or 4 to 20mA current input signals (field programmable). This current signal can be used to monitor external quantities such as vibration, pressure, or flow. The four inputs share one common return. Polarity of these inputs must be observed for proper operation The analog input circuitry is isolated as a group with the analog output circuitry and the RTD circuitry. Only one ground reference should be used for the three circuits. Transorbs limit this isolation to ±36 V with respect to the 469 safety ground. In addition, the +24 V DC analog input supply is brought out for control power of loop powered transducers. Refer to Section 1.2: Specifications on page 1–4 for maximum current draw from this supply. Figure 2–17: LOOP POWERED TRANSDUCER CONNECTION 2.2.7 ANALOG OUTPUTS The 469 provides 4 analog output channels which may be ordered to provide a full-scale range of either 0 to 1 mA (into a maximum 10 k? impedance) or 4 to 20 mA (into a maximum 1200 ? impedance). Each channel can be configured to provide full-scale output sensitivity for any range of any measured parameter. As shown in Figure 2–10: Typical Wiring Diagram on page 2–8, these outputs share one common return. Polarity of these outputs must be observed for proper operation. Shielded cable should be used, with only one end of the shield grounded, to minimize noise effects. The analog output circuitry is isolated as a group with the Analog Input circuitry and the RTD circuitry. Only one ground reference should be used for the three circuits. Transorbs limit this isolation to ±36 V with respect to the 469 safety ground. If a voltage output is required, a burden resistor must be connected at the input of the SCADA measuring device. Ignoring the input impedance of the input, Rload = Vfull scale / Imax. For 0 to 1 mA, for example, if 5 V full scale is required to correspond to 1 mA, Rload = 5 V / 0.001 A = 5000 ?. For 4 to 20 mA, this resistor