HIMA HSD8001工控模塊系統(tǒng)備件,模塊備件
可定義內(nèi)存映射,允許計算機通過使用一個Modbus數(shù)據(jù)包讀取多達124個非連續(xù)數(shù)據(jù)寄存器(設定值或?qū)嶋H值)。主計算機經(jīng)常需要連續(xù)輪詢每個連接的從屬繼電器中的各種值。如果這些值分散在整個內(nèi)存映射中,那么讀取它們將需要多次傳輸,并會給通信鏈路帶來負擔。用戶可定義存儲器映射可編程為將任何存儲器映射地址連接到連續(xù)用戶映射位置塊中的一個,從而可以通過讀取這些連續(xù)位置來訪問它們。用戶可定義區(qū)域有兩個部分:1。包含125個實際值或設定點寄存器地址的寄存器索引區(qū)(存儲器映射地址0180h至01FCh)。2.寄存器區(qū)域(存儲器映射地址0100h至017Ch),其包含寄存器索引中的地址處的數(shù)據(jù)。在存儲器映射的其余部分中分離的寄存器數(shù)據(jù)可以重新映射到用戶可定義寄存器區(qū)域中的相鄰寄存器地址。這是通過寫入用戶可定義的寄存器索引區(qū)域中的寄存器地址來實現(xiàn)的。這允許改進數(shù)據(jù)的吞吐量,并且可以消除對多個讀取命令序列的需要。例如,如果需要從469中讀取平均相電流(寄存器地址0306h)和熱測試定子RTD溫度(寄存器地址0320h)的值,則其地址可重新映射如下:1。使用功能代碼06或16將0306h寫入地址0180h(用戶可定義寄存器索引0000)。2.使用功能代碼06或16將0307h寫入地址0181h(用戶可定義寄存器索引0001)。(平均相電流為雙寄存器數(shù))3。使用功能代碼06或16將0320h寫入地址0182h(用戶可定義寄存器索引0001)。寄存器0100h(用戶定義寄存器0000)和0101h(用戶可定義寄存器0001)的讀?。üδ艽a03或04)將返回A相電流,寄存器0102h(用戶可自定義寄存器0002)將返回熱測試定子RTD溫度。6.3.3事件記錄器469事件記錄器數(shù)據(jù)從地址3000h開始。地址3003h是指向感興趣事件的指針(1表示最新事件,40表示最早事件)。要檢索事件1,請將“1”寫入事件記錄選擇器(3003h),并從3004h到3022h讀取數(shù)據(jù)。要檢索事件2,請將“2”寫入事件記錄選擇器(3003h),并從3004h到3022h讀取數(shù)據(jù)??梢砸赃@種方式檢索所有40個事件。每個事件的時間和日期戳可用于確保按順序檢索所有事件,而新事件不會破壞事件序列(事件1應比事件2更近,事件2應比事件3更近,等等)每次在跟蹤緩沖區(qū)中發(fā)生跳閘時,A/D采樣。跟蹤緩沖區(qū)根據(jù)S1 PREFERENCES?跟蹤內(nèi)存緩沖區(qū)設置點進行分區(qū)。使用S1 PREFERENCES?Trace Memory Trigger(S1優(yōu)先)設定值設置跟蹤存儲器觸發(fā)器,這決定了存儲了多少跳閘前和跳閘后循環(huán)。跟蹤緩沖區(qū)帶有時間和日期戳,并且可以與事件記錄中的行程相關(guān)。當跳閘發(fā)生時,以這種方式捕獲10個波形。這是3相電流、3個差分電流、接地電流和3個電壓波形。該信息存儲在易失性存儲器中,如果繼電器通電,該信息將丟失。要訪問捕獲的波形,請通過將其跟蹤存儲器通道(見下表)寫入跟蹤存儲器通道選擇器(地址30F1h)來選擇感興趣的波形。然后將跟蹤存儲器數(shù)據(jù)從地址3100h讀取到3400h。每個周期有12個樣本。讀取的值以實際安培或伏特為單位。地址30F8h僅顯示進入一個相位的數(shù)量,并驗證測量值的準確性。查看測量值:A2 METERING DATA(測量數(shù)據(jù))電流測量b)1 A INPUT(輸入)1。用電壓表改變以下電流5 A單位預期電流讀數(shù)測量值V DC。執(zhí)行以下步驟以驗證數(shù)字輸入的功能。1.打開所有數(shù)字輸入和跳閘線圈監(jiān)控電路的開關(guān)。2.查看數(shù)字輸入和跳閘線圈監(jiān)控的狀態(tài):實際值A(chǔ)1狀態(tài)×數(shù)字輸入3。關(guān)閉所有數(shù)字輸入和跳閘線圈監(jiān)控電路的開關(guān)。
Definable Memory Map, which allows a computer to read up to 124 nonconsecutive data registers (setpoints or actual values) by using one Modbus packet. It is often necessary for a master computer to continuously poll various values in each of the connected slave relays. If these values are scattered throughout the memory map, reading them would require numerous transmissions and would burden the communication link. The User Definable Memory Map can be programmed to join any memory map address to one in the block of consecutive User Map locations, so that they can be accessed by reading these consecutive locations. The User Definable area has two sections: 1. A register index area (memory map addresses 0180h to 01FCh) that contains 125 actual values or setpoints register addresses. 2. A register area (memory map addresses 0100h to 017Ch) that contains the data at the addresses in the register index. Register data that is separated in the rest of the memory map may be remapped to adjacent register addresses in the User Definable Registers area. This is accomplished by writing to register addresses in the User Definable Register Index area. This allows for improved through-put of data and can eliminate the need for multiple read command sequences. For example, if the values of Average Phase Current (register address 0306h) and Hottest Stator RTD Temperature (register address 0320h) are required to be read from an 469, their addresses may be remapped as follows: 1. Write 0306h to address 0180h (User Definable Register Index 0000) using function code 06 or 16. 2. Write 0307h to address 0181h (User Definable Register Index 0001) using function code 06 or 16. (Average Phase Current is a double register number) 3. Write 0320h to address 0182h (User Definable Register Index 0001) using function code 06 or 16. A read (function code 03 or 04) of registers 0100h (User Definable Register 0000) and 0101h (User Definable Register 0001) will return the Phase A Current and register 0102h (User Definable Register 0002) will return Hottest Stator RTD Temperature. 6.3.3 EVENT RECORDER The 469 event recorder data starts at address 3000h. Address 3003h is a pointer to the event of interest (1 representing the latest event and 40 representing the oldest event). To retrieve Event 1, write ‘1’ to the Event Record Selector (3003h) and read the data from 3004h to 3022h. To retrieve Event 2, write ‘2’ to the Event Record Selector (3003h) and read the data from 3004h to 3022h. All 40 events may be retrieved in this manner. The time and date stamp of each event may be used to ensure that all events have been retrieved in order without new events corrupting the sequence of events (Event 1 should be more recent than Event 2, Event 2 should be more recent than Event 3, etc.). NOTE GE Multilin 469 Motor Management Relay 6-11 6 COMMUNICATIONS 6.3 MEMORY MAP 6 6.3.4 WAVEFORM CAPTURE The 469 stores a number of cycles of A/D samples each time a trip occurs in a trace buffer. The trace buffer is partitioned according to the S1 PREFERENCES ?× TRACE MEMORY BUFFERS setpoint. The Trace Memory Trigger is set up with the S1 PREFERENCES ?× TRACE MEMORY TRIGGER setpoint and this determines how many pre-trip and post-trip cycles are stored. The trace buffer is time and date stamped and may be correlated to a trip in the event record. 10 waveforms are captured this way when a trip occurs. These are the 3 phase currents, 3 differential currents, ground current and 3 voltage waveforms. This information is stored in volatile memory and will be lost if power is cycled to the relay. To access the captured waveforms, select the waveform of interest by writing its trace memory channel (see following table) to the Trace Memory Channel Selector (address 30F1h). Then read the trace memory data from address 3100h to 3400h. There are 12 samples per cycle for each of the cycles. The values read are in actual amperes or volts. Address 30F8h shows the number of into one phase only and verify accuracy of the measured values. View the measured values in: A2 METERING DATA ? CURRENT METERING b) 1 A INPUT 1. Alter the following CURRENT 5 A UNIT EXPECTED CURRENT READING MEASURED V DC with a voltmeter. Perform the steps below to verify functionality of the digital inputs. 1. Open switches of all of the digital inputs and the trip coil supervision circuit. 2. View the status of the digital inputs and trip coil supervision in: ACTUAL VALUES ? A1 STATUS ?× DIGITAL INPUTS 3. Close switches of all of the digital inputs and the trip coil supervision circuit.